If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-17n=0
a = 6; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·6·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*6}=\frac{0}{12} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*6}=\frac{34}{12} =2+5/6 $
| 20/7x=20 | | 6(8x-6)=5(x+7) | | 15=9g-6g | | -2t=-41-6t | | 12=6m-2m | | 6(x+7)=8x+7 | | 14=2/11y | | y/6+3=-17 | | 61-9x=19+12x | | (x-3)²=17 | | 38.95+0.25x=130 | | 43-5x=15+9x | | 2x+59=9x-4 | | 0.0169=d2 | | C(m)=30+.50m | | x+71+58=180 | | a^2=161 | | 2x-2x=-10-30 | | 6(x+7)=2+1x | | 3/4o=21/2 | | 5(4-2x7=-14 | | 2(n-4)+3(n+5)=2 | | 4(4w+10)/5=-3 | | 5(4-2x=-14 | | 6(x+7)=2+1 | | A^2-15a+52=-4 | | 3g=4/5=4g-8/4 | | 2(n-4)+3(n+5)=-2 | | -4(a-1)+3(-2a+2)=3a-4+a | | 17h–12h=15 | | 2x-40=x-35 | | 12=10p-7p |